Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zookeys ; 1189: 1-32, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314107

RESUMO

Consistent species identification is foundational to biological research and requires coordination among a diversity of researchers and institutions. However, such consistency may be hindered for rare organisms where specimens, identification resources, and taxonomic experts are few. This is often the case for deep-sea taxonomic groups. For example, the deep-sea gastropod genus Provanna Dall, 1918 is common at chemosynthetic sites throughout the world's oceans, yet no formal guide to these species has yet been produced. Recent exploration has recovered new specimens of Provanna from hydrocarbon seeps off the Pacific Costa Rica Margin. The current work assesses the species identity of these specimens using shell morphology, radular morphology, and genetic barcoding (mitochondrial CO1 and nuclear H3). Records of occurrence for P.laevis Warén & Ponder, 1991, P.ios Warén & Bouchet, 1986, and P.pacifica Warén & Bouchet, 1986 are herein presented from the Costa Rica Margin. A critical taxonomic review of the 29 extant species within this genus was conducted and their genetic, morphological, and biogeographical distinction assessed. In this review, genetic and morphological support was found for nearly all current species delineations except for P.glabraOkutani et al., 1992, syn. nov. and P.laevis, syn. nov., which are herein synonymized to P.laevis, and for P.ios, syn. nov. and P.goniata Warén & Bouchet, 1986, syn. nov., which are synonymized to P.ios. Finally, the first species identification key for the extant species in this genus is presented. This work clarifies the taxonomy and systematics of this deep-sea gastropod genus and contributes a novel polytomous key for use in future research.

2.
Sci Rep ; 13(1): 19482, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945613

RESUMO

Coral reefs are iconic ecosystems that support diverse, productive communities in both shallow and deep waters. However, our incomplete knowledge of cold-water coral (CWC) niche space limits our understanding of their distribution and precludes a complete accounting of the ecosystem services they provide. Here, we present the results of recent surveys of the CWC mound province on the Blake Plateau off the U.S. east coast, an area of intense human activity including fisheries and naval operations, and potentially energy and mineral extraction. At one site, CWC mounds are arranged in lines that total over 150 km in length, making this one of the largest reef complexes discovered in the deep ocean. This site experiences rapid and extreme shifts in temperature between 4.3 and 10.7 °C, and currents approaching 1 m s-1. Carbon is transported to depth by mesopelagic micronekton and nutrient cycling on the reef results in some of the highest nitrate concentrations recorded in the region. Predictive models reveal expanded areas of highly suitable habitat that currently remain unexplored. Multidisciplinary exploration of this new site has expanded understanding of the cold-water coral niche, improved our accounting of the ecosystem services of the reef habitat, and emphasizes the importance of properly managing these systems.


Assuntos
Antozoários , Ecossistema , Animais , Humanos , Recifes de Corais , Água , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...